
hr. J. Hwr Mmr Truns/er. Vol. 36. No. IO. pp. 2499-2509. 1993 
Pruned in Grea! Britain 

0017-Y310193 $6.““+0.0” 
t lYY.1 Pcr@m,on Press Ltd 

Melting around a shaft rotating in a 
phase-change material 

AL. M. MOREGA, A. M. FILIP and A. BEJAN 
Department of Mechanical Engineering and Materials Science.‘Duke University. Box 90300. 

Durham, NC 27708-0300. U.S.A. 

and 

P. A. TYVAND 
Department of Agricultural Engineering. AgriCUltural University of Norway. 

P.O. Box 5065. N-1432 As, Norway 

(Received 2 I October 1992 and in jnal.fom 30 December 1992) 

Abstract-h this paper we describe the thin-film melting of a block of solid phase-change material (the 
bearing) around a rotating cylinder (the shaft). We determine the relation between the force applied on 
the shaft and the speed with which the shaft migrates into the bearing, the relation between the applied 
force and the torque, and the angle between the applied force and the direction of migration into the 
bearing. The method is based on contact melting theory. which combines the Reynolds thin-film lubrication 
theory with an analysis of phase-change heat transfer in the melt. The paper addresses three limiting 
regimes of the contact melting phenomenon : (I) the long bearing with melting due to frictional heating in 
the melt layer: (2) the short bearing with melting due to frictional heating in the melt layer, and (3) the 
short bearing with melting due to a temperature difference imposed between the hot cylinder and the cold 

phase-change material. 

1. INTRODUCTION 

THE MELTING phenomenon described in this paper is 
recommended by an important consideration in the 
design and operation of journal bearings. Frictional 
heat generation and the differential thermal expansion 
properties of the shaft and the bushing may lead to 
complete loss of clearance and seizure. The time- 
dependent heat conduction and thermoelastic pro- 
cesses that lead to the disappearance of the clearance 
were described most recently by Bishop and Ettles [I], 
Dufrane and Kannel [2], and Khonsari and Kim [3]. 
In this paper we focus on what can happen after the 
complete loss of clearance, if the bushing melts due to 
frictional heat generation, and seizure is prevented. 
The melt lubrication effect can be an essential safety 
feature in the design of machines where accidental 
bearing seizure cannot be tolerated. 

The problem of melting and thin-film lubrication 
around a shaft embedded in a melting solid can be 
studied based on the method of contact melting 
theory. This method was developed during the last 
decade, beginning with studies of contact melting 
inside capsules containing phase-change materials for 
energy storage [4-131. Contact melting analyses were 
also developed for predicting the speed with which a 
hot object sinks by melting into a solid block of phase- 
change material [l4-171. The lubrication charac- 
teristics of a plane surface that melts because of an 
imposed temperature difference, or because of 

friction, were also described analytically [IS-2 I]. 
Experimental studies [ 18,21-231 and numerical simu- 
lations [24, 251 have validated the predictions made 
based on contact melting theory. 

In view of the progress made on contact melting, in 
this paper we proceed analytically and numerically to 
describe the melting around the rotating shaft in three 
limiting regimes. In the first part we consider the case 
where the bearing is longer than the shaft radius, and 
the melting is caused entirely by the viscous heating 
of the melt layer. In the second part we solve the 
corresponding frictional melting problem for a bear- 
ing that is shorter than the shaft radius. Finally, in 
the third part we analyze the melting caused by 
a temperature difference that is maintained between 
the shaft and the surrounding solid phase-change 
material. 

2. THE LONG BEARING (B >> R) : MELTING 

DUE TO VISCOUS DISSIPATION 

We begin with the analysis of the melting and ero- 
sion due to viscous heating in the liquid film when the 
bearing material is at the melting point, and the shaft 
does not provide an escape route for the heat gen- 
erated in the liquid film. Two limiting bearing geo- 
metries are of interest. In this section we consider the 
relatively long bearing, that is, one in which the axial 
cpntact length B is considerably larger than the shaft 
radius R. This limiting geometry is illustrated in Fig. 
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NOMENCLATURE 

AC, A,. acceleration factors, equation (40) 

.., 

axial length of contact, Fig. 8 
constant of integration. equation (I 7) 
dimensionless applied force, 
equation (22) 
dimensionless applied force, F/phsr R 
force per unit axial length, Fig. I 
total force, Fig. 8 
average force, FJB 
negative of the pressure gradient, 
equation (6) 
dimensionless pressure gradient, 
equation (15) 
latent heat of melting 
I, integrals, equations (30)-(33) 
thermal conductivity of liquid 
order of Gauss quadrature, equation (23) 
pressure 
dimensionless pressure, equation (15) 
radius 
melting point 
shaft temperature 
dimensionless shaft temperature, 
equation (42) 
velocity components 
peripheral speed, wR 
shaft translational speed, Fig. I 
dimensionless shaft translational speed, 
equation (16) 

II’, weight associated with s,, equation (23) 
W,., W,- weights, equation (40) 

i, J’ curvilinear coordinates, Fig. I 
.Yi roots of Legendre polynomials 
Y inverse of the film thickness, I/$ 
z axial coordinate. Fig. 8. 

Greek symbols 
B peripheral coordinate, Fig. I 
6 film thickness 
d average film thickness 
CT dimensionless film thickness, 

equation (16) 
E,., E‘., E,, relative errors, equations (37) 
0 angular coordinate 
00 angle, Fig. I 
P viscosity 
P density 
7 wall shear stress, equation (14) 
? dimensionless wall shear stress, 

equation (I 5) 
cp angular coordinate 
W angular speed 
W(X) integrable kernel 
n dimensionless angular speed, 

equation (22). 

Subscript 
( kg average. 

I, which shows that the liquid film is two-dimensional 
(in the plane perpendicular to the shaft axis). The 
opposite limit in which the bearing is relatively short 
(B << R), and where the liquid flows in the axial direc- 
tion forms the subject of Sections 5 and 6. 

In Fig. I the y-direction is defined by the direction 

(- F.. - Fy) 

“ttttt 
FIG. I. Cross-section through a long bearing that melts due 

to the heating caused by viscous dissipation in the film. 

of the relative translational motion between the shaft 
and the surrounding solid bearing: seen from our 
frame of reference there is a uniform upward flow V 
of solid material, which melts and flows around the 
cylinder as a very thin film for )’ < 0. For JJ > 0 there 
is a much wider wake of earlier melted bearing 
material: the flow in this wake is not affected by the 
flow in the thin film. For y  > R we assume that the 
wake will have an almost uniform velocity V and be 
at hydrostatic pressure. 

The film thickness 6 is a function of the angle 0, 
where (r, 0) are polar coordinates, and 5 denotes the 
film thickness averaged from 0 = I[ to 8 = 2~. The 
cylindrical shaft rotates with an angular velocity o, 
which means that the peripheral velocity of the cyl- 
inder is U = oR. The translational velocity between 
the shaft and the solid bearing is assumed very small 
compared with this peripheral velocity, V << U. 

Our thin-film analysis will then be carried out to 
the leading order of the two small parameters 6/R and 
V/U. The translational velocity V is a result of the 
external force per unit axial length -F = (-F,, - f$) 
applied on the cylinder. However, we choose not to 
pose the problem with IFI given : we assume that Y is 
given a priori, and will find F as a result of compu- 
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tation. This has the advantage that we can solve the 
hydrodynamic problem without knowing the tilting 
angle 0, defined by : 

0, = arctan (F,./F,). (1) 

This angle will instead be determined a posreriori. 
With our choice of posing the problem, we can regard 
V/U as our primary small parameter, so that the other 

small parameter J/R will be derived from it. 
For the thin-film analysis it is convenient to intro- 

duce a local curvilinear coordinate system (.f, f) along 
the cylinder contour: 

.i- = r-R, ?; = R(O-cp). (2) 

Here v, is a fixed. arbitrary angle. The Jacobian of this 
transformation can be written : 

_ S(.Y. y) 

v 

a(.<. T) 
=1+;=1+0; 

0 

(3) 

when we consider the thin film where 0 < .Q < 6. 
Equation (3) shows that it is possible to treat the 
curvilinear coordinate system (.i-, F) as if it were an 
orthogonal coordinate system with no local curvature 
and constant metric, but only as long as we work 
exclusively to the leading order in our thin-film expan- 
sion. From now on we choose cp = n, so that the new 
angular coordinate is /I = 0 - 7-1 = t/R. 

The thin-film approximation for small Reynolds 
number flow is : 

where P is the pressure and kt the dynamic viscosity 
of the melted bearing. Let us decompose the liquid 
velocity vector V into its components ti and L; along 
the 4 and ?: axes. To the leading order in the small 
parameter V/U, the boundary conditions for the local 
Couette-Poiseuille flow will be : 

fi=U at 1=0 

d=O at .<=S(i). (5) 

In terms of the negative of the pressure gradient 

G(j) = - ‘; 

the thin-film Couette-Poiseuille flow is given by 

C(.<, f) = 
G(P) 
--(S-.t-).t+u 

2P 
(7) 

where 6 = 6( 3) is still an unknown function, and the 
thin-film approximation implies that it is slowly vary- 
ing compared with the average thickness 6. 

The continuity equation for a thin incompressible 
fluid film requires : 

aa at? GS’f = - g (S-i),?- 7 S’i 
2%’ a? -+ (8) 

where the primes denote derivatives with respect to 9. 

The boundary conditions for the radial flow com- 
ponent are 

li=o at .?=O 

Li=--sin/I at .i-=6. (9) 

To work consistently to the leading order in the thin- 
film approximation implies that the effect of varying 
film thickness is disregarded in the second boundary 
condition. We integrate equation (8) with respect to 
.f, and apply the boundary conditions (9) : 

SJG’+3d’6’G+6pU6’ = l2pV sin /I. (10) 

A second coupled nonlinear equation for the film 
thickness and the pressure gradient is the energy bal- 
ance equation : 

& G’ fp q = p/z,,. V sin /?. (11) 

The left side of equation (1 I) was obtained by inte- 
grating the volumetric heat generation rate ~(Z/?.?)’ 
across the liquid film. Equation (I I) states that all the 
mechanical energy that is dissipated in the Couette- 
Poiseuille flow is converted into latent heat at the 
melting front of the bearing. It is assumed throughout 
this stuq that the Peclet number Us/u is smaller than 
I, so that convection in the /? direction is negligible 
relative to radial conduction. 

The problem statement concludes with the vertical 
and horizontal force balances for the shaft, 

Fsin 0, = 
s 

OX(Psinp- T cos /?) R d/j’ (12) 

Fcos 0, = 
s 

YP cos/I+rsinfl)Rdfl (13) 
0 

where F = (F,? + F!!) “‘. and r is the shear stress on 
the shaft surface, 

U 
T = ;GS-q. (14) 

It is convenient to nondimensionalize equations 
(IO)-( 14) by introducing the variables 

- P G 7 
P=FR’ GE 

FIR” i= TR 
(15) 

‘I2 ( (16) 

The resulting nondimensional governing equations 
for the /I domain O--71 are, in order, 

fb’G+6$= C-12Pcos ,!I (17) 

f ‘$3G”‘+ ; = 12vsin j (18) 

sin 0, = (19) 
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cos b+<sin /3)dp (20) 

where f is the nondimensional applied force, and R is 
the nondimensional angular speed, 

Note that the momentum equation (17) was obtained 
by integrating equation (IO) once in /I, and that C 
is the integration constant. The pressure boundary 
conditions are P’ = 0 at /3 = 0 and /I = n. The same 
conditions were used in previous analyses of contact 
melting around hot embedded solids [ 14, 151. 

3. NUMERICAL METHOD 

The problem formulated in equations (6) and (17)- 
(21) consists of finding the unknown functions 6(p), 
C?(p) and P(p), and the unknown constants C, P and 
BO, when the external parameters f and R are given. 
This problem belongs to functional analysis, as the 
solution to the nonlinear algebraic system (17), (18) 
is represented by the functions G(p) and s(g). The 
development of a solution method is far from straight- 
forward because of the following features : 

(a) Equations (19) and (20) are of the integral type, 
and there is no a priori information regarding their 
integrands (specifically, the behavior of c’ and a). 

(b) There is a lack of information regarding the 
smoothness of the functions c”(b) and $(/3), and their 
behavior in the limits /I + 0 and p + 7~. From the 
geometry of Fig. 1 it is known that b(p) is a strictly 
positive-definite quantity, but nothing can be said 
about its smoothness. The pressure gradient function 
G(p) is of a lower smoothness class than the pressure 
function p(p). We expect the G(b) function (i) to 
change sign in order to satisfy the pressure boundary 
conditions P(O) = P(n) = 0, and (ii) to be at least a 
uniform-continuous function, in order not to induce 
discontinuities in P(b). Because of this lack of infor- 
mation it is not advantageous to formulate the solu- 
tion algorithm in terms of c(b). 

(c) Equation (18) shows that in the limits /l-+ 0 
and p + II the right-hand side vanishes, while $-+ co 
and b’e2 + 0. This means that in the same limits c’ 
approaches zero and 8 approaches infinity in such a 
way that $‘G2 + 0. These conclusions can be used 
only to check the solution u posteriori, and to justify 
the use of Y = Ilbinstead of 6in the selected method, 
in order to avoid the numerical difficulties associated 
with evaluating the integrals (1’9) and (20). 

(d) There is no information on the behavior of the 
kernels of integrals (19) and (20), except that they 
should produce convergent integrals. 

(e) The most we can say at this point about the 
constant p is that it must be positive. 

(f) The constant C is ill-defined numerically. Equa- 
tion (17) implies that in the limits /3 ---) 0 and /3 + rc the 
left-hand side, LHS = Js”3c+66, must be finite. As 
shown at (c), however, in these limits the finite LHS 
would have to be calculated as the difference between 
two infinitely large terms-numerically, a very diffi- 
cult task. At this stage we cannot anticipate either the 
sign or the range of C. 

We selected the solution method by reasoning that 
sooner or later numerical integration techniques have 
to be used to deal with equations (19) and (20). We 
chose the Gauss quadrature, which for the order N is 
defined as 

where w(x) is the integrable kernel. For Gauss-Legendre 
quadrature we substitute w(x) = 1, a = - 1, b = 1 ; 
xi are the roots of the Legendre polynomial of order 
N, and wi are the associated weights. The Gauss- 
Legendre quadrature rule of order N, {wi, xi}E ,, is 
available in tabulated form [26, 271. This quadrature 
can be used if we assume that the integrands (19) 
and (20) are smooth enough (at least nonsingular) 
throughout the domain 0 < /I ,< n. In brief, the 
method we used is a collocation extension of the 
Gauss-Legendre quadrature, which allows us to 
bracket iteratively the values of P and C, by using 
several orders for the Gauss-Legendre rule 
(N = 13,14,. . . ,30). 

The integral equations (19,20) were first written in 
terms of c’, instead of P, by integrating by parts and 
using P = 0 at p = 0, ‘II : 

sin 0, = - 
I 

’ (c+?) cos p dp (24) 
0 

s 

r 
cos e. = (G+f) sin B d/I. (25) 

0 

The momentum equation (17) and the shear stress 
formula (21) were then written in terms of the inverse 
of the film thickness Y = I/& 

c(B) =$[Y(C-IZPcos~)-6] (26) 

r’(p) = y Y ;(C-I2vcos/I)-4 1 (27) 

By substituting equations (26) and (27) into the inte- 
grals (24) and (25) we obtain 

cos e. = 12Vza+c1,+1, (28) 

-sin B. = 12V1d+CZ,+Ir (29) 

where the six coefficients of type I are unknown defi- 
nite integrals : 
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Ia = -JiJ1” Y!(Y+y)cospsinPd/ (30a) 

lb =+j” Y’( Y+y)sin/3djI (30b) 

I,= -;J; Y(Y+qsinpdp 

*r/2 li 

-__ 

s f 0 

Y sin p d/I (30~) 

(304 

(3W 

*r,2 az 

s .f 0 
Y cos p d/I. (30f) 

Equations (28,29) and the identity sin’ 0,+cos2 0, = 
I produce a second order equation in v, 

(12VI~+I,)2+(12VI,+I,)~ = I (31) 

where I, = Cl,,+ I,, and I, = Cl,+ Ir. Only the posi- 
tive root P of equation (31) is of interest. 

Another relation between v  and C is obtained by 
integrating the (? expression (26) from /I = 0 to /I = K, 
and noting that the value of the (? integral must be 
zero because p(O) = P(X), 

I, + 12 VI” 
c= I (32) 

m 

where 

s 

II 

s 

n 
rm = Y’ dp, I, = Y3 cos /I d/I, 

0 0 

5 

z 
I, = 6 Y2 dp. (33) 

0 

By eliminating G between the original momentum 
and energy equations (17), (18) we obtain the third 
order functional equation in Y(b) with real co- 
efficients, 

Y’(C- 129cos fl)“- 12Y’(C- 12Pcos p) 

+48Y- 12psin j = 0 (34) 

which has at least one real root. Worth noting is 
that the root Y = Psin B is also obtained during the 
derivation of equation (34) : this root is not acceptable 
because it does not satisfy equation (18). The final 
element necessary for constructing the algorithm is 
the pressure distribution, i.e. the integral of equation 
(26) 

P(p) = p(O) - o’ G(p) d/3. 
s 

(35) 

The numerical algorithm consisted of the following 
steps : 

(1) Assume starting values for P and C. 
(2) Use the collocation technique to solve equation 

(34) for the known ji (i = 1,2,. . , N) roots of the 
Gauss-Legendre rule of order N = 13, . . _ ,30. 

(3) Use the Y, solutions and the same quadrature 
to estimate the definite integrals labeled I. 

(4) Compute the new melting speed value, Fncw, by 
using equation (3 1). 

(5) Compute the new value C,,, using equation 
(32) and vnn,,. 

(6) Compute the two 0, values furnished by equa- 
tions (28) and (29) 

oc6”’ = cos- ’ (12 V”& + C,,,& + I,) 

@ = -sin-‘(12~“ncwf~+Cncwlc+II). (36) 

(7) Compute the relative iteration errors 

v  C 
Ey= I--, EC= I-- 

V “CW C “ew 

Ed = 1 - (sin2 O0 +cos2 0,) (37) 

where sin O0 is given by equation (28), and cos B. is 
given by equation (29). 

(8) Stop if Ey < 10m6, E= < 10m6 and E@ < IO-‘; if 
not, update p and C, and repeat the sequence. These 
error limits led to 07 and f32” values that had the 
same first five significant digits. 

After the iterative scheme converged, we performed 
an additional accuracy test by setting p(O) = 0 and 
calculating B(n) using equation (35). This calculation 
was based also on the Gauss-Legendre quadrature 
using an adaptive trial-and-error algorithm for N = 6 
and N = 17. An initial integration step of length a/l00 
was assumed and, if necessary, reduced so that the 
relative local error produced by the two quadratures 
was less than lo-“. The error 

m 
Ep = P,,,-Pmi, (38) 

measured the degree to which successive calculations 
of the P(j) curve satisfied p(n) = 0, as the order N 
was varied from 13 to 30. In the denominator of 
equation (38), p,,,m., and F,,,i. are, respectively, max (P) 
and min (P) in the j domain [0, n]. In this way we 
were able to bracket the sought P and C values (i.e. 
to calculate the two ‘best’ estimates (P,, P,) and 
(C,, C,)) so that &p did not exceed 5%. We then com- 
pared the cp values produced by the arithmetic mean 
of these brackets, and calculated the final values for 
rand C by using the first-order (gradient) corrections 
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c, -c, 
c= :(Cl+C2)-I(E~,l+Ep.2)~. (39) 

This choice of P and C led consistently to sp values 
less than 0. I %. 

Several critical aspects of the implementation of the 
iterative scheme are worth mentioning. To keep the 
convergence in P and C under control we had to use 
an adaptive rule for calculating the restart values, 

a= 
Wv P+ A,> pncw 

W,.+ A,. 
, c= 

where the acceleration factors A,, and A, had values 
in the range O-5. The weights are 

WI,...,., = max (W,,.~,.,,,-Illn~,~~.~,ll~O)~ 
where M/cl~,o.ma, are the prescribed limits, and where 
the square brackets mean ‘the integer part of.’ The 
weights were given different values (typically, 
W,. > WC) because the guesses for p and C covered 
different intervals, namely, smaller for p (only posi- 
tive), and larger for C (positive and negative). The 
initial guess for P and C was based either on the 
solutions obtained already for other quadrature rules 
(other N’s) when f  and R were fixed, or on the solution 
for a neighboring (.LQ) case when the order N was 
fixed. The number of iterations ranged from 30 to 400. 

A Newton Raphson/secant combination was used 
for solving equation (34). The entire scheme was 
implemented and run under MATHEMATICA”. 
The roots and weights for the Gauss-Legendre quad- 
rature were obtained using a code based on the pro- 
cedure developed by Golub and Welsch [26]. 

4. RESULTS 

Figures 2-7 show the main results obtained numeri- 
cally for the frictional melting of the long bearing. 
The liquid film thickness (Fig. 2) has a relatively sharp 
minimum near the leading line of the shaft (i.e. near 
/l = n/2). The minimum migrates toward the exit from 
the relative motion gap as the applied force (f) 
increases. The converging-diverging shape of the 
liquid film in this frontal region is similar to the shape 
of the liquid film caused by frictional melting under a 
plane slider [l9, 201. As was anticipated during the 
formulation of the numerical method, the film thick- 
ness 6 blows up at the entrance (p = 0) and the exit 
(j3 = K) : the actual asymptotic expressions in the two 
limits are d = 4/ @l and, respectively, b = 4/ P(n - fl). 

Nondimensionalized as 8, the film thickness is rela- 
tively insensitive to the angular speed parameter Q. In 
view of the gdefinition (l6), this means that the actual 
film thickness (6) decreases as the angular speed (w, 
or U) increases. 

Figure 3 shows two sets of results that go together, 
the negative of the pressure gradient (c’) and the cor- 
responding pressure distribution over the contact 
region (P). The pressure reaches a sharp peak in the 

I5 - 

IO - 

: 

0 - 
0 n/2 7x 

P 

FIG. 2. The thickness of the liquid film caused by frictional 
melting in a long bearing. 

vicinity of the line of minimum film thickness, and the 
peak migrates toward the exit end as the applied force 
increases. A region of negative pressures emerges in 
the vicinity of the exit if the applied force f becomes 
sufficiently small. Since the film analysis breaks down 
if cavitation occurs in this region, we limited the cal- 
culations off values that are larger than about 0.25, 
so that the region of negative pressures is insignificant. 

The tilt angle B0 is reported in Fig. 4, in which 
O0 = 90” would represent a rotating shaft that 
advances in the direction of the applied force. We see 
that 0, is less than 90” even asf becomes small, which 
means that the direction in which the shaft erodes the 
bearing is similar to the one shown in Fig. I. The 
deviation from perfect alignment (0, = 90’) becomes 
more accentuated at large enough f  values, and as the 
angular speed increases. 

In Fig. 5 we see the speed with which the shaft 
advances into the bearing. The speed increases with 
the applied force. The effect of the angular speed on 
the melting speed is somewhat deceiving, because P 
appears to be relatively insensitive to R. In fact, the 
physical melting speed V increases with the angular 
speed, as shown by the p definition (16). The insen- 
sitivity of p to fl is a sign that the melting speed was 
scaled correctly in equation (16). 
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IO 
R= Iti4 

2 
R = 1o.4 

-0.5 ; I 
ai 2 x 

P 

FIG. 3. The negative pressure gradient (top), and the cor- 
responding pressure distribution along the circumference of 
contact (bottom), during the frictional melting of a long 

bearing. 

A correlation for the P(JQ) results plotted in Fig. 
5 can be developed by noting that p appears to 
increase exponentially in J Indeed, this relationship 
can be demonstrated analytically by first non- 
dimensionalizing equation (lo), and taking the 
d( )/dfderivative of every term. Next, equation (18) 
can be integrated from /3 = 0 to /? = rc, and then 

0 0.5 I I .5 

f 

FIG. 4. The angle 8, defined in Fig. 1, for the direction of 
melting due to friction in a long bearing. 

5 

R = IL? Id’ 

v 

/ 

Id2 

0 

0 0.5 I 1.5 

f 

FIG. 5. The speed of advancement into a long bearing, during 
melting due to viscous dissipation in the liquid film. 

differentiated twice with respect tof. Combined, these 
two steps lead to a second order differential equation 
with one unknown coefficient, and a solution of type 

p = c, exp(c?f). This expression reproduces within 
0.1% the (Q = IO-‘, / = OS-IS) data of Fig. 5 if 
c, = 0.625 and c2 = I .456. 

The shear stress distribution over the shaft surface 
is shown in the upper half of Fig. 6. The local shear 

0.1 
R = Iti4 

-0.05 w 
0 x/2 7% 

P 

I 

i., 

0.5 - 

R 

Id’ 

0 0.5 1 I.5 

f 

FIG. 6. The local (top) and average (bottom) shear stress 
experienced by the shaft during the frictional melting of a 

long bearing. 
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stress ? has two sharp peaks, a high one near the line 
of minimum film thickness, and a lower one near the 
exit, i.e. at the end of the region of nearly constant 
film thickness (Fig. 1). The effects of R and f are 
illustrated in the lower part of Fig. 6, where the ordi- 
nate shows the perimeter-averaged shear stress 

(41) 

This integral was computed in the same way as the 
c’ integral of equation (35). The frictional torque per 
unit axial length experienced by the shaft is equal to 
nFRfa,,,. This quantity is proportional to the product 
f * fwg : it can be shown that this product increases as 
Q and f increase. In conclusion, the torque increases 
as the angular speed and the applied force increase. 

The upper part of Fig. 7 shows the temperature 
variation along the adiabatic surface of the shaft (T,), 
relative to the bearing surface (r,). The shaft surface 
may be modelled as adiabatic when the shaft length/ 
diameter ratio is large, or when the shaft is a poorer 
thermal conductor than the phase-change material. It 
is easy to show that the nondimensional shaft surface 
temperature shown in the figure, 

I5 

0 
0 n12 n 

P 

8 , I 

6 - 

i.“, 4 

2 - 

0”““““““” 
0 0.5 I 1.5 

f 

FIG. 7. The local (top) and average (bottom) temperature 
difference between the shaft and the bearing during the fric- 

tional melting of a long bearing. 

can be deduced from the flow solution discussed 
already, 

Fs = fzd4& 1_ f$2,2. 
24 2 6 

(43) 

The shaft surface temperature is higher in the region 
situated upstream of the line of minimum film thick- 
ness, and increases as the applied force increases. The 
effect of/is shown more clearly in the lower part of 
Fig. 7, where TsTl.avg is the result of averaging FS over 
the perimeter of contact. The Q effect is weak, 
however, this means only that the average tem- 
perature difference between the shaft and the bearing 
(T,- T,,,) scales as pU’/k, or as the angular speed 
squared, as shown in equation (42). 

By using equations (43) and (18), it can be shown 
that the shaft surface temperature can be expressed 
as a function of only g(p) and 8, namely, rT = 
(1/2)(~~sin/3-1)-(+3-“2)(CV~sin~-1)L~2+1/2, 
in which the f sign corresponds to the sign of c’. This 
expression shows that TS is small when $ is small, In 
particular, when P is of order 1 (Fig. 5) and j in the 
vicinity of 140”, the above expression yields a FS value 
of order 0.5, which agrees with the results plotted 
numerically in Fig. 7 (top). 

The shaft temperature distribution has the 
additional property that the entrance and exit tem- 
peratures are the same, FS + 3 for /I + 0 or p -+ n, 
regardless of the values assigned to Q and f. This FS 
limit can be proven analytically, and is a constant of 
the model. It means that the shaft surface temperature 
is continuous around the back side of the shaft, if that 
side continues to be modelled as adiabatic. 

A related limit that can be derived analytically is 
8% + -6/f for p + 0 or p + 7~. This limit shows 
that near the exit (p < K) the pressure gradient must 
always be positive (-e > 0), or, since P(n) = 0, that 
the pressure in that region must be negative. Fur- 
thermore, since -c is proportional to l/f as /3 -+ 7~, 
the magnitude (modulus) of p decreases asjincreases, 
and so does the j3 range occupied by the region of 
negative pressures. This behavior is confirmed by the 
numerical results seen already in Fig. 3 (bottom). 

5. THE‘SHORT BEARING (B cc R) : MELTING 

DUE TO VISCOUS DISSIPATION 

In this section we turn our attention to an entirely 
different regime of the frictional melting phenomenon, 
namely, the erosion of a bearing with axial length B 
considerably smaller than the shaft radius (Fig. 8). 
This is the opposite of the geometric limit analyzed 
until now (Fig. 1). We begin with the assumption that 
the pressure is uniform (zero) everywhere outside the 
contact melting region. The following features can be 
expected in the limit B/R + 0 : 
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FIG. 8. The melting of a short bearing. 

(a) The liquid will flow strictly in the axial direction 
z, regardless of the position /l around the perimeter 
of contact (see Fig. 8 detail). In other words, in this 
limit the liquid flows in the direction perpendicular to 
the peripheral velocity of the shaft. This feature does 
not have to he demonstrated analytically here, because 
it was proven already in the study of the frictional 
melting of a narrow flat blade aligned with the direc- 
tion of relative motion [20]. 

(b) A consequence of the z orientation of the 
squirting liquid is that the heat generation effect is due 
entirely to the /3 oriented Couette component of the 
flow. At any fl, this heat generation rate is independent 
of z, and so is the film thickness, S(p). The heat gen- 
eration rate integrated. across the film thickness is 
P(WV2b. 

(c) The pressure distribution that emerges after 
solving the appropriate thin-film lubrication problem 
is parabolic in z, 

P(z,/3) = yz(B-z). 

This can be used to show that at any jl the pressure 
averaged axially (from z = 0 to z = B) is , 
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These features make it possible to obtain an ana- 
lytical solution for the frictional melting process. The 
statement that the shaft surface is adiabatic, i.e. that 
the heat generation rate escapes entirely into the melt- 
ing front, p( U/6) 26 = ph,r V sin p, yields 

(46) 

This film thickness is symmetric about /I = a/2. Equa- 
tion (46) can be substituted in equation (45) to 
estimate the total force exerted by the shaft on the 
bearing, 

FB = P,,BsinPRdjI=~ pRB3V4 

(47) 

Equation (47) shows that the melting speed V 
increases as F#*, and as U’/2, or w~/~. It is worth 
comparing equation (47) with Fig. 5 and the p defi- 
nition (16), to see the fundamental difference between 
the scales of frictional melting in a short bearing and 
in a long bearing. By defining the average force per 
unit length P = F,/B and its nondimensional counter- 
part cf. equation (22), namely3 = p/ph,[ R, it is poss- 
ible to rewrite equation (47) as 

(d) The shaft advances into the bearing in the direc- 
tion of the applied force, or D = 90”. This is again due 

p = 0.960 ; 
0 

“231/4. (48) 

to the fact that the melt squirts in the positive and the 
negative z directions, and that the pressure is zero at Equation (48) agrees qualitatively with Fig. 5 (the f 
z = 0 and z = B for all values of /I. effect, and the insensitivity to a), except that the factor 
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FIG. 9. Comparison between the frictional melting speeds 
through a long bearing and a short bearing. 

(RIB) “I is new. This new factor is greater than 1, 
therefore, equation (48) shows that the melting rate 
is considerably greater when the bearing is short. Fig- 
ure 9 emphasizes this important difference by showing 
the long-bearing solution v/f’;’ next to the short- 
bearing solution expressed as 3;lf’ ‘I“( R/B) “2. 

As a numerical example, consider a copper bearing 
with R = I cm, B = 0.2 cm, w = 3600 r.p.m., and the 
total load Fs = 240 N. The properties of liquid copper 
at the melting point (1356 K) are p = 8940 kg mm ‘. 
hSr= 134kJkg-‘,andp=O.O044kgs-‘m-‘.Inthis 
case equation (47) yields V 2 0. I mm s- ‘, which says 
that the shaft will erode the bearing to a depth of 1 
mm in about 10 s. Equation (46) and ,0 = r/2 can be 
used to show that 6 is of the order of 1 pm. This means 
that the ratio 6/R is of order lo-‘, which validates the 
thin-film assumption made in the analysis. The film 
Reynolds number pUh/p is of order 1, and the Peclet 
number CJ6/a is of order IO-‘. These orders of mag- 
nitude are consistent with the assumptions that liquid 
inertia is negligible in the momentum balance, and 
convection is a negligible effect in the energy balance. 

6. THE SHORT BEARING: MELTING DUE TO 
IMPOSED TEMPERATURE DIFFERENCE 

The flow features identified in the preceding section 
are an opportunity to extend to the class of short 
bearings the embedded cylinder contact mehing prob- 
lem analyzed earlier by Moallemi and Viskanta [15]. 
They had documented analytically and experimentally 
the contact melting around a hot cylinder embedded 
in a block of phase-change material. Their problem is 
similar to the long bearing configuration of Fig. 1, 
except that the heating is due to an imposed tem- 
perature difference (T,- T,,,), instead of viscous dis- 
sipation in the melt. 

Consider again the geometry of Fig. 8, in which the 
axial length of the region of contact melting (B) is 
considerably smaller than the cylinder radius. The 
cylinder temperature is fixed at some level (T,) above 
the melting point (r,,,). The shaft may be rotating, 

however, the viscous dissipation effect is negligible 
with respect to the conduction heat transfer imposed 
across the liquid film, from TS to T,,,. The solution 
outlined below applies not only to the short bearing 
geometry sketched in Fig. 8, but also to the sinking 
of a vertical hot disc of thickness B and radius R, 
through a block of phase-change material. 

The fluid mechanics part of the solution continues 
to be represented by equations (44) and (45). The 
energy balance at the melting front, however, involves 
the imposed conduction heat transfer and the latent 
heat of melting, k(T,- T,,,)/6 = phsr V sin 8. This can 
be compared with the energy balance that led to equa- 
tion (46) to conclude that the only difference between 
the preceding section and this one is that the group 
VU’ is replaced by k(T,- T,,,) in the energy balance 
and the emerging results. In this way, in place of 
equation (47) we write 

where F = F,/B. 
The corresponding result for the long bearing can 

be found in Moallemi and Viskanta [I 51, and rewritten 
as 

where F is the force applied per unit axial length. By 
comparing equations (49) and (50) we note that the 
order-of-magnitude difference between the results for 
the short bearing and the long bearing is attributed to 
the factor (R/B)’ >> I, The speed of melting through 
the short bearing exceeds by a factor of order (R/B) ‘I’ 
the speed of melting through the corresponding long 
bearing. This difference is analogous to what we found 
in Fig. 9 for the short and long bearings melting under 
the influence of viscous dissipation. 

7. CONCLUDING REMARKS 

In this paper we described three limiting regimes of 
the phenomenon of contact melting and lubrication 
around a rotating shaft embedded in a solid phase- 
change material. The limiting regimes are : 

1. The long bearing with melting due to frictional 
heating in the melt layer. The global results for this 
regime are reported in Figs. 4-7. Noteworthy is the 
90”-0,, angle between the applied force and the direc- 
tion in which the shaft sinks into the bushing (Fig. 4), 
the relation between the sinking speed and the applied 
force (Fig. 5), and the relation between the applied 
force and the torque (Fig. 6, bottom). 

2. The short bearing with melting due to frictional 
heating. In this limit the melt is ejected longitudinally, 
i.e. in the direction perpendicular to the peripheral 
velocity of the shaft (Fig. 8). The shaft migrates into 
the bushing in the same direction as the applied force, 
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and the relation between the speed of migration and 
the applied force is given in equation (47). 

3. The short bearing, or short cylinder (disc), with 
melting due to an imposed temperature difference. 
The hot cylinder migrates mto the solid in the same 
direction as the applied force. Equation (49) shows the 
relation between the speed of migration and the 
applied force. 

Another way to review the progress made in this 
study is to consider the earlier work of Moallemi and 
Viskanta [15], which dealt with the sinking of a long 
cylinder into a block of solid phase change material. 
In their case the cylinder was heated to a prescribed 
temperature, and did not rotate. On this background, 
the present study shows that the contact melting 
phenomenon may depart from the limit documented 
by Moallemi and Viskanta [15] in three different 
respects : 

(i) the axial length of contact may be shorter than 
the cylinder radius, 

{ii) the cylinder may rotate inside the solid phase- 
change material, and 

(iii) the melting may be caused by frictional heating, 
instead of an imposed temperature difference. 
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